讲座题目:Distance (signless) Laplacian spectral radii of graphs
主办单位:betway必威
报告专家:余爱梅(北京交通大学 副教授)
报告时间:2021年7月8(周四) 10:00-11:30
报告地点:东校区8-400
专家简介:余爱梅, 博士, 北京交通大学副教授, 硕士生导师. 目前主要从事图、网络与组合优化的研究。主持承担了1项国家自然科学基金青年项目,发表SCI收录论文30余篇。近年来先后访问美国西弗吉利亚大学、韩国岭南大学等。
摘要:Let G be a connected graph. Let D(G) be the distance matrix of G, and Tr(G) be the diagonal matrix of the vertex transmissions in G. The distance signless Laplacian matrix of G is $\mathcal{Q}(G)=Tr(G)+D(G)$, and the distance Laplacian matrix of G is $\mathcal{Q}(G)=Tr(G)-D(G)$. The largest eigenvalue of the distance (signless) Laplacian matrix is called the distance (signless) Laplacian spectral radius of G. In this talk, we introduce the well known results on the distance (signless) Laplacian spectral radius, and present two results we obtained on the unique graph with the maximum distance (signless) Laplacian spectral radius among all the bicyclic graphs with given order.